Interchange of catalytic activity within the 2-enoyl-coenzyme A hydratase/isomerase superfamily based on a common active site template.
نویسندگان
چکیده
The structures and chemical pathways associated with the members of the 2-enoyl-CoA hydratase/isomerase enzyme superfamily are compared to show that a common active site design provides the members of this family with a CoA binding site, an expandable acyl binding pocket, an oxyanion hole for binding/polarizing the thioester C=O, and multiple active site stations for the positioning of acidic and basic amino acid side chains for use in proton shuttling. It is hypothesized that this active site template can be tailored to catalyze a wide range of chemical transformations through strategic positioning of acid/base residues among the active site stations. To test this hypothesis, the active site of one member of the 2-enoyl-CoA hydratase/isomerase family, 4-chlorobenzoyl-CoA dehalogenase, was altered by site-directed mutagenesis to include the two glutamate residues functioning in acid/base catalysis in a second family member, crotonase. Catalysis of the syn hydration of crotonyl-CoA, absent in the wild-type 4-chlorobenzoyl-CoA dehalogenase, was shown to occur with the structurally modified 4-chlorobenzoyl-CoA dehalogenase at kcat = 0.06 s-1 and Km = 50 microM.
منابع مشابه
The crotonase superfamily: divergently related enzymes that catalyze different reactions involving acyl coenzyme a thioesters.
Synergistic investigations of the reactions catalyzed by several members of an enzyme superfamily provide a more complete understanding of the relationships between structure and function than is possible from focused studies of a single enzyme alone. The crotonase (or enoyl-CoA hydratase) superfamily is such an example whereby members catalyze a wide range of metabolic reactions but share a co...
متن کاملThe crystal structure of dienoyl-CoA isomerase at 1.5 A resolution reveals the importance of aspartate and glutamate sidechains for catalysis.
BACKGROUND The degradation of unsaturated fatty acids is vital to all living organisms. Certain unsaturated fatty acids must be catabolized via a pathway auxiliary to the main beta-oxidation pathway. Dienoyl-coenzyme A (dienoyl-CoA) isomerase catalyzes one step of this auxiliary pathway, the isomerization of 3-trans,5-cis-dienoyl-CoA to 2-trans,4-trans-dienoyl-CoA, and is imported into both mit...
متن کاملMedium-chain acyl coenzyme A dehydrogenase from pig kidney has intrinsic enoyl coenzyme A hydratase activity.
The flavoprotein medium-chain acyl coenzyme A (acyl-CoA) dehydrogenase from pig kidney exhibits an intrinsic hydratase activity toward crotonyl-CoA yielding L-3-hydroxybutyryl-CoA. The maximal turnover number of about 0.5 min-1 is 500-1000-fold slower than the dehydrogenation of butyryl-CoA using electron-transferring flavoprotein as terminal acceptor. trans-2-Octenoyl- and trans-2-hexadecenoyl...
متن کاملThe 1.8 A resolution structure of hydroxycinnamoyl-coenzyme A hydratase-lyase (HCHL) from Pseudomonas fluorescens, an enzyme that catalyses the transformation of feruloyl-coenzyme A to vanillin.
The crystal structure of hydroxycinnamoyl-CoA hydratase-lyase (HCHL) from Pseudomonas fluorescens AN103 has been solved to 1.8 A resolution. HCHL is a member of the crotonase superfamily and catalyses the hydration of the acyl-CoA thioester of ferulic acid [3-(4-hydroxy-3-methoxy-phenyl)prop-2-enoic acid] and the subsequent retro-aldol cleavage of the hydrated intermediate to yield vanillin (4-...
متن کاملStructural Basis of the Induced-Fit Mechanism of 1,4-Dihydroxy-2-Naphthoyl Coenzyme A Synthase from the Crotonase Fold Superfamily
1, 4-Dihydroxy-2-naphthoyl coenzyme A (DHNA-CoA) synthase is a typical crotonase fold enzyme with an implicated role of conformational changes in catalysis. We have identified these conformational changes by determining the structures of its Escherichia coli and Synechocystis sp. PCC6803 orthologues in complex with a product analog. The structural changes include the folding of an active-site l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 38 24 شماره
صفحات -
تاریخ انتشار 1999